
Large Scale Machine Learning

European Summer School in Financial
Mathematics, Le Mans

S. Gäıffas

Presentation

Stéphane Gäıffas

A. Professor, CMAP, Ecole polytechnique

http://www.cmap.polytechnique.fr/~gaiffas/

stephane.gaiffas@cmap.polytechnique.fr

http://www.cmap.polytechnique.fr/~gaiffas/
stephane.gaiffas@cmap.polytechnique.fr

1 Teasers
Data Science in the media
From Data to Product
Big data?
Big Data is (quite) Easy

2 Supervised learning
Introduction
Loss functions, linearity

3 Penalization
Introduction
Ridge
Sparsity
Lasso

4 Some tools from convex
optimization

Proximal operator
Some tools from convex
analysis

5 Proximal gradient descent
The general problem
Gradient descent
(F)ISTA
Linesearch

6 Supervised learning recipes
Cross-validation
Classification scores
Class unbalancing
Features scaling

1 Teasers
Data Science in the media
From Data to Product
Big data?
Big Data is (quite) Easy

2 Supervised learning
Introduction
Loss functions, linearity

3 Penalization
Introduction
Ridge
Sparsity
Lasso

4 Some tools from convex
optimization

Proximal operator
Some tools from convex
analysis

5 Proximal gradient descent
The general problem
Gradient descent
(F)ISTA
Linesearch

6 Supervised learning recipes
Cross-validation
Classification scores
Class unbalancing
Features scaling

Direct Matin

Le Monde

NY Times I

NY Times II

NY Times III

World Bank

Deloitte

Criteo

Data is the new oil?

Web search

Recommendation system

Advertisement

Intrusion detection

Crime prevention

Marketing

Marketing Technology Landscape January 2014

IN
FR
A&
'

ST
RU

CT
U
RE

'
BA

CK
BO

N
E'

PL
AT

FO
RM

S'
M
ID
D
LE
&'

W
AR

E'

Databases' Big'Data'

by'Sco?'Brinker'''@chiefmartec'''h?p://chiefmartec.com'

Cloud'

CRM' MarkeNng'AutomaNon'/'Integrated'MarkeNng' Web'Site'/'WCM'/'WEM' E&commerce'

User'Mgmt' Cloud'Connectors' APIs'

MARKETING'EXPERIENCES'

Channel/Local'Mktg'

MarkeNng'Resource'Mgmt'

MARKETING'OPERATIONS'

Agile'&'Project'Mgmt'

Dashboards'

MarkeNng'AnalyNcs'

Business'Intelligence'

Digital'Asset'Mgmt'

MarkeNng'Data'

Sales'Enablement'

Content'MarkeNng'PersonalizaNon'

TesNng'&'OpNmizaNon'

SEO'

MarkeNng'Apps'

Customer'Experience/VoC'

Calls'&'Call'Centers'

Events'&'Webinars'

Loyalty'&'GamificaNon'

Social'Media'MarkeNng'

CommuniNes'&'Reviews'

Video'Ads'&'MarkeNng'

Email'MarkeNng'

Display'AdverNsing'

Search'&'Social'Ads'

Tag'Management'

IN
TE
RN

ET
'Web'Dev' MarkeNng'Environment'

Data'Management'PlaYorms/Customer'Data'PlaYorms'

Web'&'Mobile'AnalyNcs'

Mobile'App'Dev'

Mobile'MarkeNng'

CreaNve'&'Design'

Health

Linkedin

Smart city

Sports

Genomics

Physics

Wikipedia I

Wikipedia II

Big data is an all-encompassing term for any collection of
data sets so large and complex that it becomes difficult to
process using traditional data processing applications.

Data science is the study of the generalizable extraction of
knowledge from data, yet the key word is science.

Statistics is the study of the collection, analysis,
interpretation, presentation and organization of data.

Big data?

Big data

Capacity to store information has doubled every 40 months
since the 1980s

In 2012, 2.5 exabytes (2.5× 1018) created per day

Big internet companies such as Google, Amazon, Facebook,
but also industries from pharmaceuticals, insurance, banks,
telecoms, personalized medicine, marketing, bioinformatics

A new Context

Data everywhere

Huge volume,

Huge variety...

Affordable computation units

Cloud computing

Graphical Processor Units (GPU)...

Growing academic and industrial interest!

Big Data is (quite) Easy

Example of off the shelves solution

Big Data is (quite) Easy

Example of off the shelves solution

export AWS_ACCESS_KEY_ID=<your-access-keyid>

export AWS_SECRET_ACCESS_KEY=<your-access-key-secret>

cellule/spark/ec2/sparl-ec2 -i cellule.pem -k cellule -s <number of machines> launch <cluster-name>

ssh -i cellule.pem root@<your-cluster-master-dns>

spark-ec2/copy-dir ephemeral-hdfs/conf

ephemeral-hdfs/bin/hadoop distcp s3n://celluledecalcul/dataset/raw/train.csv /data/train.csv

scp -i cellule.pem cellule/challenge/target/scala-2.10/target/scala-2.10/challenges_2.10-0.0.jar

cellule/spark/bin/spark-submit \

--class fr.cc.challenge.Preprocess \

challenges_2.10-0.0.jar \

/data/train.csv \

/data/train2.csv

cellule/spark/bin/spark-submit \

--class fr.cc.sparktest.LogisticRegression \

challenges_2.10-0.0.jar \

/data/train2.csv

⇒ Logistic regression for arbitrary large dataset!

A Complex Ecosystem! I

A Complex Ecosystem! II

Data science or statistics? I

A vocabulary problem:

data scientist or statistician?

statistics or data science?

Data science or statistics? II

A possible answer:

Data science or statistics? III

1 Teasers
Data Science in the media
From Data to Product
Big data?
Big Data is (quite) Easy

2 Supervised learning
Introduction
Loss functions, linearity

3 Penalization
Introduction
Ridge
Sparsity
Lasso

4 Some tools from convex
optimization

Proximal operator
Some tools from convex
analysis

5 Proximal gradient descent
The general problem
Gradient descent
(F)ISTA
Linesearch

6 Supervised learning recipes
Cross-validation
Classification scores
Class unbalancing
Features scaling

Supervised learning

Setting

Data xi ∈ X , yi ∈ Y for i = 1, . . . , n

xi is an input and yi is an output

xi are called features and xi ∈ X = Rd

yi are called labels
Y = {−1, 1} or Y = {0, 1} for binary classification
Y = {1, . . . ,K} for multiclass classification
Y = R for regression

Usually, assume (xi , yi) are i.i.d

Goal: given x , predict y .

Supervised learning

High-dimension: d is large, say d ≥ 104

Big data: n is large, say n ≥ 106

Scenarios where:

d is large, n is small: computational biology

d is small, n is large: marketing

d is large, n is large: web-advertisement, ad display

Supervised learning – Loss functions, linearity

What to do
Minimize with respect to f : Rd → R

Rn(f) =
1

n

n∑
i=1

`(yi , f (xi))

where

` is a loss function. `(yi , f (xi)) small means yi is close to f (xi)

Rn(f) is called goodness-of-fit or empirical risk

Computation of f is called training or estimation step

Supervised learning – Loss functions, linearity

When d is large, impossible to fit a complex functions f on
the data

When n is large, training is too time-consuming for a complex
function f

Hence:

Choose a linear function f :

f (x) = 〈x , θ〉 =
d∑

j=1

xjθj ,

for some parameter vector θ ∈ Rd to be trained

Remark: linear with respect to xi , but you can choose the xi
based on the data. Hence, not linear w.r.t the original features:
“feature engineering”

Supervised learning – Loss functions, linearity

Least-squares loss (linear regression): `(y , z) = 1
2(y − z)2 for

y ∈ R, namely

Rn(θ) =
1

2n

n∑
i=1

(yi − 〈xi , θ〉)2 =
1

2n
‖Y − Xθ‖22

where X = [X1, · · · ,Xn]> ∈ Rn×d and y = [y1, · · · , yn] ∈ Rd

Logistic regression loss (logit, log-linear regression):
`(y , z) = log(1 + e−yz) for y ∈ {−1, 1}, namely

Rn(θ) =
1

n

n∑
i=1

log(1 + e−yi 〈xi ,θ〉)

Supervised learning – Logistic Regression

Binary classification: label y ∈ {0, 1}. Assume that

P(Y = y |X = x) = Bernoulli(σθ(x))

with σθ(x) = σ(〈θ, x〉) where σ is the sigmoid function

σ(z) =
1

1 + e−z
.

Supervised learning – Logistic Regression

Binary classification: label y ∈ {0, 1}. Assume that

P(Y = y |X = x) = Bernoulli(σθ(x))

with σθ(x) = σ(〈θ, x〉) where σ is the sigmoid function

σ(z) =
1

1 + e−z
.

Hence for y ∈ {0, 1}:

P(Y = y |X = x) = σθ(x)y (1− σθ(x))1−y = σθ(x)yσθ(−x)1−y

and the log-likelihood is given by (if we replace label 0 by −1 for
convenience)

n∑
i=1

logP[Y = yi |X = xi] = −
n∑

i=1

log(1 + e−yi 〈xi ,θ〉)

Supervised learning – Logistic Regression

Goodness of fit = − log-likelihood, so this leads to

Rn(θ) =
1

n

n∑
i=1

log(1 + e−yi 〈xi ,θ〉)

Equivalent to assuming that the log-odd ratio is linear:

log
(P[Y = 1|X = x]

P[Y = 0|X = x]

)
= 〈x , θ〉

This leads to a linear separation between the 1s and 0s. Logistic
regression is a linear classifier

Supervised learning – Logistic Regression

Now I’ve trained a logistic classifier: I have an estimation θ̂ of the
parameters based on data (x1, y1), . . . , (xn, yn)

I have a new point xn+1 but no label yn+1 for him. I want to have
a prediction ŷn+1 ∈ {−1, 1} of its label

How do I proceed?

I compute probability scores of 1 and −1:

p̂
(1)
n+1 =

1

1 + e−〈xn+1,θ̂〉
and p̂

(−1)
n+1 = 1− p̂

(1)
n+1

Now I predict the label using the MAP rule (Maximum A
Posteriori)

ŷn+1 =

{
1 if p̂

(1)
n+1 ≥ t

−1 otherwise

for a threshold t ∈ (0, 1) (usually t = 1/2)

Supervised learning – Logistic Regression

Remark:

p̂
(1)
n+1 ≥ t ⇔ 〈xn+1, θ̂〉 ≥ log

(t

1− t

)
(〈xn+1, θ̂〉 ≥ 0 if t = 1/2)

This means that the logistic classifier separates data points into 1
and −1 with a hyperplane

We say that it is a linear classifier

Supervised learning – Loss functions, linearity

Training the model: compute

θ̂ ∈ argmin
θ∈Rd

Rn(θ)

where

Rn(θ) =
1

n

n∑
i=1

`(yi , 〈xi , θ〉).

Classical losses

`(y , z) = 1
2(y − z)2: least-squares loss, linear regression (label

y ∈ R)

`(y , z) = (1− yz)+ hinge loss, or SVM loss (binary
classification, label y ∈ {−1, 1})
`(y , z) = log(1 + e−yz) logistic loss (binary classification, label
y ∈ {−1, 1})

Supervised learning – Loss functions, linearity

`least−sq(y , z) =
1

2
(y − z)2 `hinge(y , z) = (1− yz)+

`logistic(y , z) = log(1 + e−yz)

1 Teasers
Data Science in the media
From Data to Product
Big data?
Big Data is (quite) Easy

2 Supervised learning
Introduction
Loss functions, linearity

3 Penalization
Introduction
Ridge
Sparsity
Lasso

4 Some tools from convex
optimization

Proximal operator
Some tools from convex
analysis

5 Proximal gradient descent
The general problem
Gradient descent
(F)ISTA
Linesearch

6 Supervised learning recipes
Cross-validation
Classification scores
Class unbalancing
Features scaling

Penalization – Introduction

You should never actually fit a model by minimizing only

θ̂n ∈ argmin
θ∈Rd

1

n

n∑
i=1

`(yi , 〈xi , θ〉).

You should minimize instead

θ̂n ∈ argmin
θ∈Rd

{1

n

n∑
i=1

`(yi , 〈xi , θ〉) + λ pen(θ)
}

where

pen is a penalization function, that encodes a prior
assumption on θ. It forbids θ to be “too complex”

λ > 0 is a tuning or smoothing parameter, that balances
goodness-of-fit and penalization

Penalization – Introduction

Why using penalization?

θ̂ ∈ argmin
θ∈Rd

{1

n

n∑
i=1

`(yi , 〈xi , θ〉) + λ pen(θ)
}

Penalization, for a well-chosen λ > 0, allows to avoid overfitting

Penalization – Ridge

Most classical penalization is the Ridge penalization

pen(θ) = ‖θ‖22 =
d∑

j=1

θ2j .

It penalizes the energy of θ, measured by squared `2-norm

Sparsity inducing penalization.

It would be nice to find a model where θ̂j = 0 for many
coordinates j

few features are useful for prediction, the model is simpler,
with a smaller dimension

We say that θ̂ is sparse

How to do it ?

Penalization – Sparsity

It is tempting to use

θ̂ ∈ argmin
θ∈Rd

{1

n

n∑
i=1

`(yi , 〈xi , θ〉) + λ‖θ‖0
}
,

where
‖θ‖0 = #{j : θj 6= 0}.

But, to do it exactly, you need to try all possible subsets of
non-zero coordinates of θ: 2d possibilities. Impossible!

Penalization – Lasso

A solution: Lasso penalization (least absolute shrinkage and
selection operator)

pen(θ) = ‖θ‖1 =
d∑

j=1

|θj |.

This is penalization based on the `1-norm ‖ · ‖1.

In a noiseless setting, in a certain regime, `1-minimization
gives the “same solution” as ‖ · ‖0
Why do `1-penalization leads to sparsity?

Penalization – Lasso

Why `2 (ridge) does not induce sparsity?

Penalization – Lasso

Hence, a minimizer

θ̂ ∈ argmin
θ∈Rd

{1

n

n∑
i=1

`(yi , 〈xi , θ〉) + λ‖θ‖1
}

is typically sparse (θ̂j = 0 for many j).

for λ large (larger than some constant) θ̂j = 0 for all j

for λ = 0 then there is no penalization

Between the two, the “sparsity” depends on the value of λ:
once again, it is a regularization or penalization parameter

Penalization – Lasso

For the least squares loss

θ̂ ∈ argmin
θ∈Rd

{ 1

2n
‖Y − Xθ‖22 +

λ

2
‖θ‖22

}
is called ridge linear regression, and

θ̂ ∈ argmin
θ∈Rd

{ 1

2n
‖Y − Xθ‖22 + λ‖θ‖1

}
is called Lasso linear regression.

Penalization – Lasso

Consider the minimization problem

min
a∈R

1

2
(a− b)2 + λ|a|

for λ > 0 and b ∈ R
Derivative at 0+: d+ = λ− b

Derivative at 0−: d− = −λ− b

Let a∗ be the solution

a∗ = 0 iff d+ ≥ 0 and d− ≤ 0, namely |b| ≤ λ
a∗ ≥ 0 iff d+ ≤ 0, namely b ≥ λ and a∗ = b − λ
a∗ ≤ 0 iff d− ≥ 0, namely b ≤ −λ and a∗ = b + λ

Hence
a∗ = sign(b)(|b| − λ)+

where a+ = max(0, a)

Penalization – Lasso

As a consequence, we have

a∗ = argmin
a∈Rd

1

2
‖a− b‖22 + λ‖a‖1 = Sλ(b)

where
Sλ(b) = sign(b)� (|b| − λ)+

is the soft-thresholding operator

1 Teasers
Data Science in the media
From Data to Product
Big data?
Big Data is (quite) Easy

2 Supervised learning
Introduction
Loss functions, linearity

3 Penalization
Introduction
Ridge
Sparsity
Lasso

4 Some tools from convex
optimization

Proximal operator
Some tools from convex
analysis

5 Proximal gradient descent
The general problem
Gradient descent
(F)ISTA
Linesearch

6 Supervised learning recipes
Cross-validation
Classification scores
Class unbalancing
Features scaling

Proximal operator

For any g convex [lower semi-continuous] and any y ∈ Rd , we
define the proximal operator

proxg (y) = argmin
x∈Rd

{1

2
‖x − y‖22 + g(x)

}
(strongly convex problem ⇒ unique minimum)

We already proved that soft-thresholding is the proximal
operator of the `1-norm

proxλ‖·‖1(y) = Sλ(y) = sign(y)� (|y | − λ)+

Proximal operators and proximal algorithms are now fundamental
tools for optimization in machine learning

Examples of proximal operators

g(x) = c for a constant c , proxg = Id

If C convex set, and

g(x) = δC (x) =

{
0 if x ∈ C

+∞ if x /∈ C

then
proxg = projC = projection onto C .

If g(x) = 〈b, x〉+ c , then

proxλg (x) = x − λb

If g(x) = 1
2x
>Ax + 〈b, x〉+ c with A symetric positive, then

proxλg (x) = (I + λA)−1(x − λb)

Examples of proximal operators

If g(x) = 1
2‖x‖

2
2 then

proxλg (x) =
1

1 + λ
x = shrinkage operator

If g(x) = − log x then

proxλg (x) =
x +
√
x2 + 4λ

2

If g(x) = ‖x‖2 then

proxλg (x) =
(

1− λ

‖x‖2

)
+
x ,

the block soft-thresholding operator

Examples of proximal operators

If g(x) = ‖x‖1 + γ
2‖x‖

2
2 (elastic-net) where γ > 0, then

proxλg (x) =
1

1 + λγ
proxλ‖·‖1(x)

If g(x) =
∑

g∈G ‖xg‖2 where G partition of {1, . . . , d},

(proxλg (x))g =
(

1− λ

‖xg‖2

)
+
xg ,

for g ∈ G . Block soft-thresholding, used for group-Lasso

Subdifferential

The subdifferential of f ∈ Γ0 at x is the set

∂f (x) =
{
g ∈ Rd : f (y) ≥ 〈g , y − x〉+ f (x) for all y ∈ Rd

}

Each element is called a subgradient

Optimality criterion

0 ∈ ∂f (x) iff f (x) ≤ f (y) ∀y

If f is differentiable at x , then ∂f (x) = {∇f (x)}
Example: ∂|0| = [−1, 1]

Smoothness

f : Rd → [−∞,+∞] is

f is L-smooth if it is continuously differentiable and if

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖2 for any x , y ∈ Rd .

Equivalent to Hf (x) � LId for all x , where Hf (x) Hessian at x
when twice continuously differentiable [i.e. LId − Hf (x)
positive semi-definite]

f is µ-strongly convex if f (·)− µ
2‖ · ‖

2
2 is convex. Equivalent to

f (y) ≥ f (x) + 〈g , y − x〉+
µ

2
‖y − x‖22

for g ∈ ∂f (x). Equivalent to Hf (x) � µId when twice
differentiable.

Optimality criterion

Optimality criterion: θ∗ ∈ argminθ∈Rd{f (θ) + g(θ)} iff

−∇f (θ∗) ∈ ∂g(θ∗)

namely

− 1

λ
∇Rn(θ∗) ∈ ∂g(θ∗)

For the Lasso

θ̂ ∈ argmin
θ∈Rd

{ 1

2n
‖Y − Xθ‖22 + λ‖θ‖1

}
this optimality criterion is{

1
n |X

>
j (Y − X θ̂)| ≤ λ if θ̂j = 0

1
nX
>
j (Y − X θ̂) = λ sign(θ̂j) if θ̂j 6= 0

for any j = 1, . . . , d , where Xj is the j-th conumn of X .

1 Teasers
Data Science in the media
From Data to Product
Big data?
Big Data is (quite) Easy

2 Supervised learning
Introduction
Loss functions, linearity

3 Penalization
Introduction
Ridge
Sparsity
Lasso

4 Some tools from convex
optimization

Proximal operator
Some tools from convex
analysis

5 Proximal gradient descent
The general problem
Gradient descent
(F)ISTA
Linesearch

6 Supervised learning recipes
Cross-validation
Classification scores
Class unbalancing
Features scaling

The general problem we want to solve

How to solve

θ̂ ∈ argmin
θ∈Rd

{1

n

n∑
i=1

`(yi , 〈xi , θ〉) + λ pen(θ)
}

???

Put for short

f (θ) =
1

n

n∑
i=1

`(yi , 〈xi , θ〉) and g(θ) = λ pen(θ)

Assume that

f is convex and L-smooth

g is convex and continuous, but possibly non-smooth (for
instance `1 penalization)

g is prox-capable: not hard to compute its proximal operator

Examples

Smoothness of f :

Least-squares:

∇f (θ) =
1

n
X>(Xθ − Y), L =

‖X>X‖op
n

Logistic loss:

∇f (θ) = −1

n

n∑
i=1

yi
1 + eyi 〈xi ,θ〉

xi , L =
maxi=1,...,n ‖Xi‖22

4n

Prox-capability of g :

we gave the explicit prox for many penalizations above

Gradient descent

Now how do I minimize f + g ?

Key point: the descent lemma. If f convex and L-smooth,
then for any L′ ≥ L:

f (θ′) ≤ f (θ) + 〈∇f (θ), θ′ − θ〉+
L′

2
‖θ′ − θ‖22

for any θ, θ′ ∈ Rd

At iteration k, the current point is θk . I use the descent
lemma:

f (θ) ≤ f (θk) + 〈∇f (θk), θ − θk〉+
L′

2
‖θ − θk‖22.

Gradient descent

Remark that

argmin
θ∈Rd

{
f (θk) + 〈∇f (θk), θ − θk〉+

L′

2
‖θ − θk‖22

}
= argmin

θ∈Rd

∥∥∥θ − (θk − 1

L′
∇f (θk)

)∥∥∥2
2

Hence, choose

θk+1 = θk − 1

L′
∇f (θk)

This is the basic gradient descent algorithm [cf previous
lecture]

Gradient descent is based on a majoration-minimization
principle, with a quadratic majorant given by the descent
lemma

But we forgot about g ...

ISTA

Let’s put back g :

f (θ) + g(θ) ≤ f (θk) + 〈∇f (θk), θ − θk〉+
L′

2
‖θ − θk‖22 + g(θ)

and again

argmin
θ∈Rd

{
f (θk) + 〈∇f (θk), θ − θk〉+

L′

2
‖θ − θk‖22 + g(θ)

}
= argmin

θ∈Rd

{L′
2

∥∥∥θ − (θk − 1

L′
∇f (θk)

)∥∥∥2
2

+ g(θ)
}

= argmin
θ∈Rd

{1

2

∥∥∥θ − (θk − 1

L′
∇f (θk)

)∥∥∥2
2

+
1

L′
g(θ)

}
= proxg/L′

(
θk − 1

L′
∇f (θk)

)
The prox operator naturally appears because of the descent lemma

ISTA

Proximal gradient descent algorithm [also called ISTA]

Input: starting point θ0, Lipschitz constant L > 0 for ∇f
For k = 1, 2, . . . until converged do

θk = proxg/L

(
θk−1 − 1

L∇f (θk−1)
)

Return last θk

Also called Forward-Backward splitting. For Lasso with
least-squares loss, iteration is

θk = Sλ/L

(
θk−1 − 1

L
(X>Xθk−1 − X>Y)

)
,

where Sλ is the soft-thresholding operator

ISTA

Put for short F = f + g ,

Take any θ∗ ∈ argminθ∈Rd F (θ)

Theorem (Beck Teboulle (2009))

If the sequence {θk} is generated by ISTA, then

F (θk)− F (θ∗) ≤ L‖θ0 − θ∗‖22
2k

Convergence rate is O(1/k)

Is it possible to improve the O(1/k) rate?

FISTA

Yes! Using Accelerated proximal gradient descent (called
FISTA, Nesterov 83, 04, Beck Teboule 09)

Idea: to find θk+1, use an interpolation between θk and θk−1

Accelerated proximal gradient descent algorithm [FISTA]

Input: starting points z1 = θ0, Lipschitz constant L > 0 for
∇f , t1 = 1

For k = 1, 2, . . . until converged do

θk = proxg/L(zk − 1
L∇f (zk))

tk+1 =
1+
√

1+4t2k
2

zk+1 = θk + tk−1
tk+1

(θk − θk−1)

Return last θk

FISTA

Theorem (Beck Teboulle (2009))

If the sequence {θk} is generated by FISTA, then

F (θk)− F (θ∗) ≤ 2L‖θ0 − θ∗‖22
(k + 1)2

Convergence rate is O(1/k2)

Is O(1/k2) the optimal rate in general?

FISTA

Yes. Put g = 0

Theorem (Nesterov)

For any optimization procedure satisfying

θk+1 ∈ θ1 + span(∇f (θ1), . . . ,∇f (θk)),

there is a function f on Rd convex and L-smooth such that

min
1≤j≤k

f (θj)− f (θ∗) ≥ 3L

32

‖θ1 − θ∗‖22
(k + 1)2

for any 1 ≤ k ≤ (d − 1)/2.

FISTA

Comparison of ISTA and FISTA

FISTA is not a descent algorithm, while ISTA is

Backtracking linesearch

What if I don’t know L > 0?

‖X>X‖op can be long to compute

Letting L evolve along iterations k generally improve
convergence speed

Backtracking linesearch. Idea:

Start from a very small lipschitz constant L

Between iteration k and k + 1, choose the smallest L
satisfying the lemma descent at zk

Backtracking linesearch

At iteration k of FISTA, we have zk and a constant Lk
1 Put L← Lk
2 Do an iteration

θ ← proxg/L

(
zk − 1

L
∇f (zk)

)
3 Check it this step satisfies the descent lemma at zk :

f (θ) + g(θ) ≤ f (zk) + 〈∇f (zk), θ − zk〉+
L

2
‖θ − zk‖22 + g(θ)

4 If yes, then θk+1 ← θ and Lk+1 ← L and continue FISTA

5 It not, then put L← 2L (say), and go back to point 2

Sequence Lk is non-decreasing: between iteration k and k + 1, a
tweak is to decrease it a little bit to have (much) faster
convergence

1 Teasers
Data Science in the media
From Data to Product
Big data?
Big Data is (quite) Easy

2 Supervised learning
Introduction
Loss functions, linearity

3 Penalization
Introduction
Ridge
Sparsity
Lasso

4 Some tools from convex
optimization

Proximal operator
Some tools from convex
analysis

5 Proximal gradient descent
The general problem
Gradient descent
(F)ISTA
Linesearch

6 Supervised learning recipes
Cross-validation
Classification scores
Class unbalancing
Features scaling

Cross-validation

Generalization is one the most important goal of machine
learning. A trained classifier has to be “generalizable”, namely
it can be applied in another context than the one of the
training dataset, without overfitting

This can be achieved using cross-validation

There is no machine learning without cross-validation at
some point!

We have to choose a penalization parameter λ that
generalizes

Cross-validation

V-Fold cross-validation

Most standard cross-validation technique

Take V = 5 or V = 10. Pick a random partition I1, . . . , IV of
{1, . . . , n}, where |Iv | ≈ n

V for any v = 1, . . . ,V

Cross-validation

Put
For each v = 1, . . . ,V

Put Dv ,train = ∪v ′ 6=v Iv ′ and Dv ,test = Iv

Find

θ̂v ,λ ∈ argmin
θ

{ 1

|Dv ,train|
∑

i∈Dv,train

`(yi , 〈Xi , θ〉) + λ pen(θ)
}

Take

λ̂ ∈ argmin
λ

V∑
v=1

∑
i∈Dv,test

`(yi , 〈Xi , θ̂v ,λ〉)

Cross-validation

Training error:

λ 7→
V∑

v=1

∑
i∈Dv,train

`(yi , 〈Xi , θ̂v ,λ〉)

Testing, validation or cross-validation error:

λ 7→
V∑

v=1

∑
i∈Dv,test

`(yi , 〈Xi , θ̂v ,λ〉)

Classification scores

Now I’ve trained a logistic classifier (or any other classifier), I
have an estimation θ̂ of θ

Or I’m training it but I want to test it as well along my
cross-validation loop

On testing samples (xi , yi), compute (if using logistic
classifier)

p̂i ,0 = P[Y = 0|X = xi] =
1

1 + e〈xi ,θ̂〉
,

p̂i ,1 = P[Y = 1|X = xi] =
1

1 + e−〈xi ,θ̂〉

Predict the label using the MAP rule (Maximum A Posteriori)

ŷi = arg max
y=0,1

p̂i ,y

Test it by comparing prediction ŷi and ground truth yi

Classification scores

Standard error metrics in classification

Precision, Recall, F-Score, AUC

For each i : true label yi , predicted label ŷi

Confusion matrix

Classification scores

Precision =
TP

#(predicted P)
=

TP

TP + FP

Recall =
TP

#(real P)
=

TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN
F-Score = 2

Precision× Recall

Precision + Recall

Classification scores

In multiclass classification (more than 2 labels), can compute
precision and recall for each label

Recall = Sensitivity

False-Discovery Rate FDR = 1− Precision

Many other metrics...

Classification scores

ROC Curve (Receiver Operating Characteristic)

For binary classification

True positive Rate TPR = TP
#(real P) = TP

TP+FN

False positive Rate FPR = FP
#(real N) = FP

FP+TN

x-axis: FPR, y -axis: TPR

Each point At of the curve has coordinates (FPRt ,TPRt),
where FPRt and TPRt are FPR and TPR of the confusion
matrix obtained by the classification rule

ŷi = 1p̂i,0≥t

AUC score is the Area Under the ROC Curve

Classification scores

Classification scores

Class unbalancing

In my supervised dataset there are 90% labels 0 and 10%
labels 1, but I want to detect 1s

What if I train without including this in my training rule?

You’ll only predict 0s!

In logistic regression, just correct the likelihood using the class
balancing: put

ŵ0 =
n

{#i : yi = 0}
and ŵ1 =

n

{#i : yi = 1}

Class unbalancing

The logistic goodness-of-fit is

Rn(θ) =
1

n

n∑
i=1

(
log(1 + e〈θ,xi 〉)1yi=1 + log(1 + e−〈θ,xi 〉)1yi=0

)
Just replace it by

Rn(θ) =
1

n

n∑
i=1

(
ŵ1 log(1 + e〈θ,xi 〉)1yi=1 + ŵ0 log(1 + e−〈θ,xi 〉)1yi=0

)

This changes the gradient you use in a solver

Gradient steps for 1s are larger then the ones for 0s, when
#1� #0

Class unbalancing

In an unbalanced dataset, when using V -Fold cross-validation,
I’m likely to end up with a fold without 1s!

Use “stratified” V -Fold cross-validation:

if there is p1% of label 1s in the dataset

proportion of of 1s must be p1% inside each fold

easy: put 1s in the dataset first, and find fold number of a
line using the modulo with the number of folds (see above)

Features scaling

Features matrix X with n-lines and d-columns

X•,j = j-th column of X and Xj ,• = j-th row.

Scale of features vector X•,1, . . . ,X•,d is important at the training
step

when using penalization, the coefficients of the classifier won’t
be penalized the same

Lipschitz constant of the loss often depend on ‖X•,j‖2 (e.g.
logistic): features with large scale slow down convergence

Often need to scale the features:

center, include an intercept, standardize

min-max scaling

binarize

Features scaling

On continuous features (continuous is discrete with many
modalities...)

Centering and standardization (or “whitening”) of j-th
feature: replace X•,j by

X•,j − X̄•,j

‖X•,j − X̄•,j‖2

where X̄•,j = 1
n

∑n
i=1 Xi ,j

Min-max scaling of j-th feature: replace X•,j by

X•,j −mini Xi ,j

maxi Xi ,j −mini Xi ,j

(better for sparse features: keep the zeros)

Include an intercept: include a constant feature X•,0 = 1

Features scaling

Feature binarization of j-th feature

If X•,j is discrete

If Xi ,j ∈ {1, . . .Mj}, Mj = number of modalities (small)
create Mj − 1 new “dummy” binary features: replace

1
1
2
1
3
3

 by

0
0
1
0
0
0

 ,

0
0
0
0
1
1

Features scaling

If X•,j is continuous

Choose number of bins M

Compute the quantiles qm/M for m = 0, . . . ,M of X•,j , put
Im = [q(m−1)/M , qm/M] for m = 1, . . . ,M

Create M − 1 dummy binary features X̃•,j ,1, . . . , X̃•,j ,M−1 such
that

X̃i ,j ,m = 1 if Xi ,j ∈ Im

for m = 1, . . . ,M − 1

Featuring for text data

Corpus:

["The lecture about machine learning is really awesome",

"The teacher is nice and funny. The teacher is a nerd",

"I’m wondering what I’m going to do with all of this",

"Maybe create a startup or maybe use these ideas in finance",

"Maybe I’m just curious about learning things"]

Features:

[’about’, ’all’, ’and’, ’awesome’, ’create’, ’curious’, ’do’,

’finance’, ’funny’, ’going’, ’ideas’, ’in’, ’is’, ’just’, ’learning’,

’lecture’, ’machine’, ’maybe’, ’nerd’, ’nice’, ’of’, ’or’, ’really’,

’startup’, ’teacher’, ’the’, ’these’, ’things’, ’this’, ’to’, ’use’,

’what’, ’with’, ’wondering’]

Binarized features:

[[1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 2 2 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1]

[0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 2 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0]

[1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]]

Featuring for text data

With many documents and many words, use hashing

Hash function:

set of all possible words→ {1, . . . ,M}

as much injective as possible. It gives the position of each word in
a vector

{’and’: 26, ’all’: 28, ’just’: 46, ’awesome’: 14, ’startup’: 12,

’learning’: 6, ’in’: 25, ’curious’: 41, ’nerd’: 49, ’really’: 3,

’funny’: 5, ’use’: 10, ’things’: 27, ’create’: 0, ’ideas’: 49,

’machine’: 0, ’to’: 37, ’going’: 33, ’wondering’: 6, ’lecture’: 9,

’is’: 12, ’nice’: 47, ’do’: 21, ’finance’: 43, ’what’: 20, ’with’:

8, ’teacher’: 41, ’about’: 12, ’these’: 44, ’maybe’: 49, ’this’: 22,

’of’: 47, ’the’: 34, ’or’: 17}

Standard algorithm: MurmurHash

Featuring for text data

For scaling word counts (“bag of words”), standard scaling is given
by TF-IDF (Time Frequenty - Inverse Document Frequency)

Reflect how important a word is in a document, relatively to
all documents in corpus

Words w1, . . . ,wJ , corpus of documents D = {D1, . . . ,DI}
Put

TF(w ,D) = # times w occurs in D

IDF(w ,D) = log
(#D

#{D ∈ D : w ∈ D}

)
Then

TF-IDF(w ,D,D) = TF(w ,D)× IDF(w ,D)

Featuring for text data

Corpus:

["I like machine learning",

"I like machine learning a lot",

"I hate machine learning",

"I don’t understand machine learning",

"I am an expert of machine learning",

"My cousin is an expert of machine learning"]

Words:

[’am’, ’an’, ’cousin’, ’don’, ’expert’, ’hate’, ’is’, ’learning’,

’like’, ’lot’, ’machine’, ’my’, ’of’, ’understand’]

TF-IDF:

[[0. 0. 0. 0. 0. 0. 0. 0.43 0.79 0. 0.43 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0. 0.31 0.57 0.7 0.31 0. 0. 0.]

[0. 0. 0. 0. 0. 0.85 0. 0.38 0. 0. 0.38 0. 0. 0.]

[0. 0. 0. 0.65 0. 0. 0. 0.29 0. 0. 0.29 0. 0. 0.65]

[0.54 0.44 0. 0. 0.44 0. 0. 0.24 0. 0. 0.24 0. 0.44 0.]

[0. 0.35 0.43 0. 0.35 0. 0.43 0.19 0. 0. 0.19 0.43 0.35 0.]]

Agenda for tomorrow

Stochastic Gradient Descent and beyond

Collaborative Filtering - Matrix Completion

	Teasers
	Data Science in the media
	From Data to Product
	Big data?
	Big Data is (quite) Easy

	Supervised learning
	Introduction
	Loss functions, linearity

	Penalization
	Introduction
	Ridge
	Sparsity
	Lasso

	Some tools from convex optimization
	Proximal operator
	Some tools from convex analysis

	Proximal gradient descent
	The general problem
	Gradient descent
	(F)ISTA
	Linesearch

	Supervised learning recipes
	Cross-validation
	Classification scores
	Class unbalancing
	Features scaling

